Cargando…

The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain

We study the Hilbert geometry induced by the Siegel disk domain, an open-bounded convex set of complex square matrices of operator norm strictly less than one. This Hilbert geometry yields a generalization of the Klein disk model of hyperbolic geometry, henceforth called the Siegel–Klein disk model...

Descripción completa

Detalles Bibliográficos
Autor principal: Nielsen, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597112/
https://www.ncbi.nlm.nih.gov/pubmed/33286788
http://dx.doi.org/10.3390/e22091019
Descripción
Sumario:We study the Hilbert geometry induced by the Siegel disk domain, an open-bounded convex set of complex square matrices of operator norm strictly less than one. This Hilbert geometry yields a generalization of the Klein disk model of hyperbolic geometry, henceforth called the Siegel–Klein disk model to differentiate it from the classical Siegel upper plane and disk domains. In the Siegel–Klein disk, geodesics are by construction always unique and Euclidean straight, allowing one to design efficient geometric algorithms and data structures from computational geometry. For example, we show how to approximate the smallest enclosing ball of a set of complex square matrices in the Siegel disk domains: We compare two generalizations of the iterative core-set algorithm of Badoiu and Clarkson (BC) in the Siegel–Poincaré disk and in the Siegel–Klein disk: We demonstrate that geometric computing in the Siegel–Klein disk allows one (i) to bypass the time-costly recentering operations to the disk origin required at each iteration of the BC algorithm in the Siegel–Poincaré disk model, and (ii) to approximate fast and numerically the Siegel–Klein distance with guaranteed lower and upper bounds derived from nested Hilbert geometries.