Cargando…
Evolutionary Optimization of Ensemble Learning to Determine Sentiment Polarity in an Unbalanced Multiclass Corpus
Sentiment polarity classification in social media is a very important task, as it enables gathering trends on particular subjects given a set of opinions. Currently, a great advance has been made by using deep learning techniques, such as word embeddings, recurrent neural networks, and encoders, suc...
Autores principales: | García-Mendoza, Consuelo V., Gambino, Omar J., Villarreal-Cervantes, Miguel G., Calvo, Hiram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597113/ https://www.ncbi.nlm.nih.gov/pubmed/33286789 http://dx.doi.org/10.3390/e22091020 |
Ejemplares similares
-
Multiclass classification of environmental chemical stimuli from unbalanced plant electrophysiological data
por: Bhadra, Nivedita, et al.
Publicado: (2023) -
Multilabel multiclass sentiment and emotion dataset from indonesian mobile application review
por: Riccosan, et al.
Publicado: (2023) -
Multiclass sentiment analysis on COVID-19-related tweets using deep learning models
por: Vernikou, Sotiria, et al.
Publicado: (2022) -
Identification of Orphan Genes in Unbalanced Datasets Based on Ensemble Learning
por: Gao, Qijuan, et al.
Publicado: (2020) -
Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
por: Yang, Junshan, et al.
Publicado: (2016)