Cargando…
Multi-Fidelity Aerodynamic Data Fusion with a Deep Neural Network Modeling Method
To generate more high-quality aerodynamic data using the information provided by different fidelity data, where low-fidelity aerodynamic data provides the trend information and high-fidelity aerodynamic data provides value information, we applied a deep neural network (DNN) algorithm to fuse the inf...
Autores principales: | He, Lei, Qian, Weiqi, Zhao, Tun, Wang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597116/ https://www.ncbi.nlm.nih.gov/pubmed/33286791 http://dx.doi.org/10.3390/e22091022 |
Ejemplares similares
-
Multi-fidelity information fusion with concatenated neural networks
por: Pawar, Suraj, et al.
Publicado: (2022) -
Learning aerodynamics with neural network
por: Peng, Wenhui, et al.
Publicado: (2022) -
Accelerating Hyperparameter Optimization of Deep Neural Network via Progressive Multi-Fidelity Evaluation
por: Zhu, Guanghui, et al.
Publicado: (2020) -
An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox
por: Jing, Luyang, et al.
Publicado: (2017) -
Aerodynamic data of space vehicles
por: Weiland, Claus
Publicado: (2014)