Cargando…
Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation
Generative adversarial networks (GANs), which are a promising type of deep generative network, have recently drawn considerable attention and made impressive progress. However, GAN models suffer from the well-known problem of mode collapse. This study focuses on this challenge and introduces a new m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597127/ https://www.ncbi.nlm.nih.gov/pubmed/33286824 http://dx.doi.org/10.3390/e22091055 |
_version_ | 1783602269398237184 |
---|---|
author | Zhao, Huan Li, Tingting Xiao, Yufeng Wang, Yu |
author_facet | Zhao, Huan Li, Tingting Xiao, Yufeng Wang, Yu |
author_sort | Zhao, Huan |
collection | PubMed |
description | Generative adversarial networks (GANs), which are a promising type of deep generative network, have recently drawn considerable attention and made impressive progress. However, GAN models suffer from the well-known problem of mode collapse. This study focuses on this challenge and introduces a new model design, called the encoded multi-agent generative adversarial network (E-MGAN), which tackles the mode collapse problem by introducing the variational latent representations learned from a variable auto-encoder (VAE) to a multi-agent GAN. The variational latent representations are extracted from training data to replace the random noise input of the general multi-agent GANs. The generator in E-MGAN employs multiple generators and is penalized by a classifier. This integration guarantees that the proposed model not only enhances the quality of generated samples but also improves the diversity of generated samples to avoid the mode collapse problem. Moreover, extensive experiments are conducted on both a synthetic dataset and two large-scale real-world datasets. The generated samples are visualized for qualitative evaluation. The inception score (IS) and Fréchet inception distance (FID) are adopted to measure the performance of the model for quantitative assessment. The results confirmed that the proposed model achieves outstanding performances compared to other state-of-the-art GAN variants. |
format | Online Article Text |
id | pubmed-7597127 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75971272020-11-09 Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation Zhao, Huan Li, Tingting Xiao, Yufeng Wang, Yu Entropy (Basel) Article Generative adversarial networks (GANs), which are a promising type of deep generative network, have recently drawn considerable attention and made impressive progress. However, GAN models suffer from the well-known problem of mode collapse. This study focuses on this challenge and introduces a new model design, called the encoded multi-agent generative adversarial network (E-MGAN), which tackles the mode collapse problem by introducing the variational latent representations learned from a variable auto-encoder (VAE) to a multi-agent GAN. The variational latent representations are extracted from training data to replace the random noise input of the general multi-agent GANs. The generator in E-MGAN employs multiple generators and is penalized by a classifier. This integration guarantees that the proposed model not only enhances the quality of generated samples but also improves the diversity of generated samples to avoid the mode collapse problem. Moreover, extensive experiments are conducted on both a synthetic dataset and two large-scale real-world datasets. The generated samples are visualized for qualitative evaluation. The inception score (IS) and Fréchet inception distance (FID) are adopted to measure the performance of the model for quantitative assessment. The results confirmed that the proposed model achieves outstanding performances compared to other state-of-the-art GAN variants. MDPI 2020-09-21 /pmc/articles/PMC7597127/ /pubmed/33286824 http://dx.doi.org/10.3390/e22091055 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Huan Li, Tingting Xiao, Yufeng Wang, Yu Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation |
title | Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation |
title_full | Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation |
title_fullStr | Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation |
title_full_unstemmed | Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation |
title_short | Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation |
title_sort | improving multi-agent generative adversarial nets with variational latent representation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597127/ https://www.ncbi.nlm.nih.gov/pubmed/33286824 http://dx.doi.org/10.3390/e22091055 |
work_keys_str_mv | AT zhaohuan improvingmultiagentgenerativeadversarialnetswithvariationallatentrepresentation AT litingting improvingmultiagentgenerativeadversarialnetswithvariationallatentrepresentation AT xiaoyufeng improvingmultiagentgenerativeadversarialnetswithvariationallatentrepresentation AT wangyu improvingmultiagentgenerativeadversarialnetswithvariationallatentrepresentation |