Cargando…
Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation
Generative adversarial networks (GANs), which are a promising type of deep generative network, have recently drawn considerable attention and made impressive progress. However, GAN models suffer from the well-known problem of mode collapse. This study focuses on this challenge and introduces a new m...
Autores principales: | Zhao, Huan, Li, Tingting, Xiao, Yufeng, Wang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597127/ https://www.ncbi.nlm.nih.gov/pubmed/33286824 http://dx.doi.org/10.3390/e22091055 |
Ejemplares similares
-
Simplified Fréchet Distance for Generative Adversarial Nets
por: Kim, Chung-Il, et al.
Publicado: (2020) -
Single Image De-Raining via Improved Generative Adversarial Nets †
por: Ren, Yi, et al.
Publicado: (2020) -
Adversarial Defense Method Based on Latent Representation Guidance for Remote Sensing Image Scene Classification
por: Da, Qingan, et al.
Publicado: (2023) -
AUE-Net: Automated Generation of Ultrasound Elastography Using Generative Adversarial Network
por: Zhang, Qingjie, et al.
Publicado: (2022) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018)