Cargando…
Detection of Algorithmically Generated Domain Names Using the Recurrent Convolutional Neural Network with Spatial Pyramid Pooling
Domain generation algorithms (DGAs) use specific parameters as random seeds to generate a large number of random domain names to prevent malicious domain name detection. This greatly increases the difficulty of detecting and defending against botnets and malware. Traditional models for detecting alg...
Autores principales: | Liu, Zhanghui, Zhang, Yudong, Chen, Yuzhong, Fan, Xinwen, Dong, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597131/ https://www.ncbi.nlm.nih.gov/pubmed/33286827 http://dx.doi.org/10.3390/e22091058 |
Ejemplares similares
-
Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation
por: Abdani, Siti Raihanah, et al.
Publicado: (2021) -
Optimization Algorithm of Moving Object Detection Using Multiscale Pyramid Convolutional Neural Networks
por: Yang, Zhe, et al.
Publicado: (2023) -
Application of Convolution Neural Network (CNN) Model Combined with Pyramid Algorithm in Aerobics Action Recognition
por: Liang, Qi
Publicado: (2021) -
Retracted: Optimization Algorithm of Moving Object Detection Using Multiscale Pyramid Convolutional Neural Networks
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
UMUDGA: A dataset for profiling algorithmically generated domain names in botnet detection
por: Zago, Mattia, et al.
Publicado: (2020)