Cargando…
Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles
The present analysis deals with the entropy analysis of the blood flow through an anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and incompressible. The lubricati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597145/ https://www.ncbi.nlm.nih.gov/pubmed/33286839 http://dx.doi.org/10.3390/e22101070 |
_version_ | 1783602273984708608 |
---|---|
author | Zhang, Lijun Bhatti, Muhammad Mubashir Marin, Marin S. Mekheimer, Khaled |
author_facet | Zhang, Lijun Bhatti, Muhammad Mubashir Marin, Marin S. Mekheimer, Khaled |
author_sort | Zhang, Lijun |
collection | PubMed |
description | The present analysis deals with the entropy analysis of the blood flow through an anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and incompressible. The lubrication approach is used for the mathematical modeling. The second law of thermodynamics is used to examine the entropy generation. The exact solutions are obtained against velocity and temperature profile with the use of computational software. The results for Entropy, Velocity, Bejan number, temperature profile, and impedance profile are discussed by plotting the graphs. ZnO-NPs have promising applications in biomedical engineering due to its low toxicity, economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e., antibacterial and anticancer activity, and also beneficial in antidiabetic treatment. The monitoring of the blood temperature in the case of the tapered artery has supreme importance in controlling the temperature of blood in the living environment. The presence of a magnetic field is advantageous to manage and control the blood motion at different temperatures. The present outcomes are enriched to give valuable information for the research scientists in the field biomedical science, who are looking to examine the blood flow with stenosis conditions and also beneficial in treating multiple diseases. |
format | Online Article Text |
id | pubmed-7597145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75971452020-11-09 Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles Zhang, Lijun Bhatti, Muhammad Mubashir Marin, Marin S. Mekheimer, Khaled Entropy (Basel) Article The present analysis deals with the entropy analysis of the blood flow through an anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and incompressible. The lubrication approach is used for the mathematical modeling. The second law of thermodynamics is used to examine the entropy generation. The exact solutions are obtained against velocity and temperature profile with the use of computational software. The results for Entropy, Velocity, Bejan number, temperature profile, and impedance profile are discussed by plotting the graphs. ZnO-NPs have promising applications in biomedical engineering due to its low toxicity, economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e., antibacterial and anticancer activity, and also beneficial in antidiabetic treatment. The monitoring of the blood temperature in the case of the tapered artery has supreme importance in controlling the temperature of blood in the living environment. The presence of a magnetic field is advantageous to manage and control the blood motion at different temperatures. The present outcomes are enriched to give valuable information for the research scientists in the field biomedical science, who are looking to examine the blood flow with stenosis conditions and also beneficial in treating multiple diseases. MDPI 2020-09-24 /pmc/articles/PMC7597145/ /pubmed/33286839 http://dx.doi.org/10.3390/e22101070 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Lijun Bhatti, Muhammad Mubashir Marin, Marin S. Mekheimer, Khaled Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles |
title | Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles |
title_full | Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles |
title_fullStr | Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles |
title_full_unstemmed | Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles |
title_short | Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles |
title_sort | entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (zno) nanoparticles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597145/ https://www.ncbi.nlm.nih.gov/pubmed/33286839 http://dx.doi.org/10.3390/e22101070 |
work_keys_str_mv | AT zhanglijun entropyanalysisonthebloodflowthroughanisotropicallytaperedarteriesfilledwithmagneticzincoxideznonanoparticles AT bhattimuhammadmubashir entropyanalysisonthebloodflowthroughanisotropicallytaperedarteriesfilledwithmagneticzincoxideznonanoparticles AT marinmarin entropyanalysisonthebloodflowthroughanisotropicallytaperedarteriesfilledwithmagneticzincoxideznonanoparticles AT smekheimerkhaled entropyanalysisonthebloodflowthroughanisotropicallytaperedarteriesfilledwithmagneticzincoxideznonanoparticles |