Cargando…
On the Use of Concentrated Time–Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring
Since decades past, time–frequency (TF) analysis has demonstrated its capability to efficiently handle non-stationary multi-component signals which are ubiquitous in a large number of applications. TF analysis us allows to estimate physics-related meaningful parameters (e.g., [Formula: see text] , g...
Autores principales: | Houidi, Sarra, Fourer, Dominique, Auger, François |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597148/ https://www.ncbi.nlm.nih.gov/pubmed/33286680 http://dx.doi.org/10.3390/e22090911 |
Ejemplares similares
-
Deep Learning-Based Non-Intrusive Commercial Load Monitoring
por: Zhou, Mengran, et al.
Publicado: (2022) -
An improved multi-input deep convolutional neural network for automatic emotion recognition
por: Chen, Peiji, et al.
Publicado: (2022) -
Non-Intrusive Load Monitoring
por: Fortuna, Luigi, et al.
Publicado: (2022) -
IoT-based intrusion detection system using convolution neural networks
por: Aljumah, Abdullah
Publicado: (2021) -
Deep Adaptive Ensemble Filter for Non-Intrusive Residential Load Monitoring
por: Kianpoor, Nasrin, et al.
Publicado: (2023)