Cargando…

Solving Equations of Motion by Using Monte Carlo Metropolis: Novel Method Via Random Paths Sampling and the Maximum Caliber Principle

A permanent challenge in physics and other disciplines is to solve Euler–Lagrange equations. Thereby, a beneficial investigation is to continue searching for new procedures to perform this task. A novel Monte Carlo Metropolis framework is presented for solving the equations of motion in Lagrangian s...

Descripción completa

Detalles Bibliográficos
Autores principales: González Diaz, Diego, Davis, Sergio, Curilef, Sergio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597156/
https://www.ncbi.nlm.nih.gov/pubmed/33286685
http://dx.doi.org/10.3390/e22090916
Descripción
Sumario:A permanent challenge in physics and other disciplines is to solve Euler–Lagrange equations. Thereby, a beneficial investigation is to continue searching for new procedures to perform this task. A novel Monte Carlo Metropolis framework is presented for solving the equations of motion in Lagrangian systems. The implementation lies in sampling the path space with a probability functional obtained by using the maximum caliber principle. Free particle and harmonic oscillator problems are numerically implemented by sampling the path space for a given action by using Monte Carlo simulations. The average path converges to the solution of the equation of motion from classical mechanics, analogously as a canonical system is sampled for a given energy by computing the average state, finding the least energy state. Thus, this procedure can be general enough to solve other differential equations in physics and a useful tool to calculate the time-dependent properties of dynamical systems in order to understand the non-equilibrium behavior of statistical mechanical systems.