Cargando…
Solving Equations of Motion by Using Monte Carlo Metropolis: Novel Method Via Random Paths Sampling and the Maximum Caliber Principle
A permanent challenge in physics and other disciplines is to solve Euler–Lagrange equations. Thereby, a beneficial investigation is to continue searching for new procedures to perform this task. A novel Monte Carlo Metropolis framework is presented for solving the equations of motion in Lagrangian s...
Autores principales: | González Diaz, Diego, Davis, Sergio, Curilef, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597156/ https://www.ncbi.nlm.nih.gov/pubmed/33286685 http://dx.doi.org/10.3390/e22090916 |
Ejemplares similares
-
Note on the metropolis Monte Carlo method on random lattices
por: Tsuda, N, et al.
Publicado: (1994) -
Solving QCD evolution equations in rapidity space with Markovian Monte Carlo
por: Golec-Biernat, K., et al.
Publicado: (2007) -
Perturbation bounds for Monte Carlo within Metropolis via restricted approximations
por: Medina-Aguayo, Felipe, et al.
Publicado: (2020) -
The Kinetic Monte Carlo Method as a Way To Solve the
Master Equation for Interstellar Grain Chemistry
por: Cuppen, H. M., et al.
Publicado: (2013) -
Principles of Monte Carlo Calculations and Codes
por: Fassò, Alberto, et al.
Publicado: (2011)