Cargando…
Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator
The need for cooling is more and more important in current applications, as environmental constraints become more and more restrictive. Therefore, the optimization of reverse cycle machines is currently required. This optimization could be split in two parts, namely, (1) the design optimization, lea...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597165/ https://www.ncbi.nlm.nih.gov/pubmed/33286682 http://dx.doi.org/10.3390/e22090913 |
_version_ | 1783602279928037376 |
---|---|
author | Feidt, Michel Costea, Monica |
author_facet | Feidt, Michel Costea, Monica |
author_sort | Feidt, Michel |
collection | PubMed |
description | The need for cooling is more and more important in current applications, as environmental constraints become more and more restrictive. Therefore, the optimization of reverse cycle machines is currently required. This optimization could be split in two parts, namely, (1) the design optimization, leading to an optimal dimensioning to fulfill the specific demand (static or nominal steady state optimization); and (2) the dynamic optimization, where the demand fluctuates, and the system must be continuously adapted. Thus, the variability of the system load (with or without storage) implies its careful control-command. The topic of this paper is concerned with part (1) and proposes a novel and more complete modeling of an irreversible Carnot refrigerator that involves the coupling between sink (source) and machine through a heat transfer constraint. Moreover, it induces the choice of a reference heat transfer entropy, which is the heat transfer entropy at the source of a Carnot irreversible refrigerator. The thermodynamic optimization of the refrigerator provides new results regarding the optimal allocation of heat transfer conductances and minimum energy consumption with associated coefficient of performance (COP) when various forms of entropy production owing to internal irreversibility are considered. The reported results and their consequences represent a new fundamental step forward regarding the performance upper bound of Carnot irreversible refrigerator. |
format | Online Article Text |
id | pubmed-7597165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75971652020-11-09 Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator Feidt, Michel Costea, Monica Entropy (Basel) Article The need for cooling is more and more important in current applications, as environmental constraints become more and more restrictive. Therefore, the optimization of reverse cycle machines is currently required. This optimization could be split in two parts, namely, (1) the design optimization, leading to an optimal dimensioning to fulfill the specific demand (static or nominal steady state optimization); and (2) the dynamic optimization, where the demand fluctuates, and the system must be continuously adapted. Thus, the variability of the system load (with or without storage) implies its careful control-command. The topic of this paper is concerned with part (1) and proposes a novel and more complete modeling of an irreversible Carnot refrigerator that involves the coupling between sink (source) and machine through a heat transfer constraint. Moreover, it induces the choice of a reference heat transfer entropy, which is the heat transfer entropy at the source of a Carnot irreversible refrigerator. The thermodynamic optimization of the refrigerator provides new results regarding the optimal allocation of heat transfer conductances and minimum energy consumption with associated coefficient of performance (COP) when various forms of entropy production owing to internal irreversibility are considered. The reported results and their consequences represent a new fundamental step forward regarding the performance upper bound of Carnot irreversible refrigerator. MDPI 2020-08-20 /pmc/articles/PMC7597165/ /pubmed/33286682 http://dx.doi.org/10.3390/e22090913 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Feidt, Michel Costea, Monica Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator |
title | Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator |
title_full | Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator |
title_fullStr | Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator |
title_full_unstemmed | Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator |
title_short | Effect of Machine Entropy Production on the Optimal Performance of a Refrigerator |
title_sort | effect of machine entropy production on the optimal performance of a refrigerator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597165/ https://www.ncbi.nlm.nih.gov/pubmed/33286682 http://dx.doi.org/10.3390/e22090913 |
work_keys_str_mv | AT feidtmichel effectofmachineentropyproductionontheoptimalperformanceofarefrigerator AT costeamonica effectofmachineentropyproductionontheoptimalperformanceofarefrigerator |