Cargando…
Can Short and Partial Observations Reduce Model Error and Facilitate Machine Learning Prediction?
Predicting complex nonlinear turbulent dynamical systems is an important and practical topic. However, due to the lack of a complete understanding of nature, the ubiquitous model error may greatly affect the prediction performance. Machine learning algorithms can overcome the model error, but they a...
Autor principal: | Chen, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597167/ https://www.ncbi.nlm.nih.gov/pubmed/33286844 http://dx.doi.org/10.3390/e22101075 |
Ejemplares similares
-
Observing errors in a combination of error and correct models favors observational motor learning
por: Tang, Zhi-Ming, et al.
Publicado: (2022) -
Predicting self-intercepted medication ordering errors using machine learning
por: King, Christopher Ryan, et al.
Publicado: (2021) -
Can we learn from errors? Retrieval facilitates the correction of false memories for pragmatic inferences
por: Maraver, María J., et al.
Publicado: (2022) -
ContraDRG: Automatic Partial Charge Prediction by Machine Learning
por: Martin, Roman, et al.
Publicado: (2019) -
Machine learning augmentation reduces prediction error in collective forecasting: development and validation across prediction markets with application to COVID events
por: Gruen, Alexander, et al.
Publicado: (2023)