Cargando…
Characterizing the Complexity of Weighted Networks via Graph Embedding and Point Pattern Analysis
We propose a new metric to characterize the complexity of weighted complex networks. Weighted complex networks represent a highly organized interactive process, for example, co-varying returns between stocks (financial networks) and coordination between brain regions (brain connectivity networks). A...
Autores principales: | Chen, Shuo, Zhang, Zhen, Mo, Chen, Wu, Qiong, Kochunov, Peter, Hong, L. Elliot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597178/ https://www.ncbi.nlm.nih.gov/pubmed/33286694 http://dx.doi.org/10.3390/e22090925 |
Ejemplares similares
-
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020) -
Graph Embedding for Pattern Analysis
por: Fu, Yun, et al.
Publicado: (2013) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022) -
Graph embedding on biomedical networks: methods, applications and evaluations
por: Yue, Xiang, et al.
Publicado: (2020) -
Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network
por: Xiao, Ze, et al.
Publicado: (2020)