Cargando…
Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets
The complexity and high dimensionality are the inherent concerns of big data. The role of feature selection has gained prime importance to cope with the issue by reducing dimensionality of datasets. The compromise between the maximum classification accuracy and the minimum dimensions is as yet an un...
Autores principales: | Chaudhry, Muhammad Umar, Yasir, Muhammad, Asghar, Muhammad Nabeel, Lee, Jee-Hyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597188/ https://www.ncbi.nlm.nih.gov/pubmed/33286862 http://dx.doi.org/10.3390/e22101093 |
Ejemplares similares
-
MOTiFS: Monte Carlo Tree Search Based Feature Selection
por: Chaudhry, Muhammad Umar, et al.
Publicado: (2018) -
A self-learning Monte Carlo tree search algorithm for robot path planning
por: Li, Wei, et al.
Publicado: (2023) -
RNA inverse folding using Monte Carlo tree search
por: Yang, Xiufeng, et al.
Publicado: (2017) -
Retrosynthetic planning with experience-guided Monte Carlo tree search
por: Hong, Siqi, et al.
Publicado: (2023) -
Recursive algorithms for phylogenetic tree counting
por: Gavryushkina, Alexandra, et al.
Publicado: (2013)