Cargando…
Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures
Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom is develope...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597198/ https://www.ncbi.nlm.nih.gov/pubmed/33286705 http://dx.doi.org/10.3390/e22090936 |
_version_ | 1783602289089445888 |
---|---|
author | Garcés, Milton A. |
author_facet | Garcés, Milton A. |
author_sort | Garcés, Milton A. |
collection | PubMed |
description | Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom is developed for use with wavelet transforms. Two different continuous wavelet transform (CWT) reconstruction formulas are presented and tested under different signal to noise ratio (SNR) conditions. A sparse superposition of Nth order Gabor atoms worked well against a synthetic blast transient using the wavelet entropy and an entropy-like parametrization of the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for sparse feature extraction and dictionary-based machine learning across multiple sensor modalities. |
format | Online Article Text |
id | pubmed-7597198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75971982020-11-09 Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures Garcés, Milton A. Entropy (Basel) Article Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom is developed for use with wavelet transforms. Two different continuous wavelet transform (CWT) reconstruction formulas are presented and tested under different signal to noise ratio (SNR) conditions. A sparse superposition of Nth order Gabor atoms worked well against a synthetic blast transient using the wavelet entropy and an entropy-like parametrization of the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for sparse feature extraction and dictionary-based machine learning across multiple sensor modalities. MDPI 2020-08-26 /pmc/articles/PMC7597198/ /pubmed/33286705 http://dx.doi.org/10.3390/e22090936 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Garcés, Milton A. Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures |
title | Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures |
title_full | Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures |
title_fullStr | Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures |
title_full_unstemmed | Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures |
title_short | Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures |
title_sort | quantized constant-q gabor atoms for sparse binary representations of cyber-physical signatures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597198/ https://www.ncbi.nlm.nih.gov/pubmed/33286705 http://dx.doi.org/10.3390/e22090936 |
work_keys_str_mv | AT garcesmiltona quantizedconstantqgaboratomsforsparsebinaryrepresentationsofcyberphysicalsignatures |