Cargando…
A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns
Epilepsy is one of the most ordinary neuropathic illnesses, and electroencephalogram (EEG) is the essential method for recording various brain rhythm activities due to its high temporal resolution. The conditional entropy of ordinal patterns (CEOP) is known to be fast and easy to implement, which ca...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597202/ https://www.ncbi.nlm.nih.gov/pubmed/33286861 http://dx.doi.org/10.3390/e22101092 |
_version_ | 1783602290108661760 |
---|---|
author | Liu, Xian Fu, Zhuang |
author_facet | Liu, Xian Fu, Zhuang |
author_sort | Liu, Xian |
collection | PubMed |
description | Epilepsy is one of the most ordinary neuropathic illnesses, and electroencephalogram (EEG) is the essential method for recording various brain rhythm activities due to its high temporal resolution. The conditional entropy of ordinal patterns (CEOP) is known to be fast and easy to implement, which can effectively measure the irregularity of the physiological signals. The present work aims to apply the CEOP to analyze the complexity characteristics of the EEG signals and recognize the epilepsy EEG signals. We discuss the parameter selection and the performance analysis of the CEOP based on the neural mass model. The CEOP is applied to the real EEG database of Bonn epilepsy for identification. The results show that the CEOP is an excellent metrics for the analysis and recognition of epileptic EEG signals. The differences of the CEOP in normal and epileptic brain states suggest that the CEOP could be a judgment tool for the diagnosis of the epileptic seizure. |
format | Online Article Text |
id | pubmed-7597202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75972022020-11-09 A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns Liu, Xian Fu, Zhuang Entropy (Basel) Article Epilepsy is one of the most ordinary neuropathic illnesses, and electroencephalogram (EEG) is the essential method for recording various brain rhythm activities due to its high temporal resolution. The conditional entropy of ordinal patterns (CEOP) is known to be fast and easy to implement, which can effectively measure the irregularity of the physiological signals. The present work aims to apply the CEOP to analyze the complexity characteristics of the EEG signals and recognize the epilepsy EEG signals. We discuss the parameter selection and the performance analysis of the CEOP based on the neural mass model. The CEOP is applied to the real EEG database of Bonn epilepsy for identification. The results show that the CEOP is an excellent metrics for the analysis and recognition of epileptic EEG signals. The differences of the CEOP in normal and epileptic brain states suggest that the CEOP could be a judgment tool for the diagnosis of the epileptic seizure. MDPI 2020-09-29 /pmc/articles/PMC7597202/ /pubmed/33286861 http://dx.doi.org/10.3390/e22101092 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Xian Fu, Zhuang A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns |
title | A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns |
title_full | A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns |
title_fullStr | A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns |
title_full_unstemmed | A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns |
title_short | A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns |
title_sort | novel recognition strategy for epilepsy eeg signals based on conditional entropy of ordinal patterns |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597202/ https://www.ncbi.nlm.nih.gov/pubmed/33286861 http://dx.doi.org/10.3390/e22101092 |
work_keys_str_mv | AT liuxian anovelrecognitionstrategyforepilepsyeegsignalsbasedonconditionalentropyofordinalpatterns AT fuzhuang anovelrecognitionstrategyforepilepsyeegsignalsbasedonconditionalentropyofordinalpatterns AT liuxian novelrecognitionstrategyforepilepsyeegsignalsbasedonconditionalentropyofordinalpatterns AT fuzhuang novelrecognitionstrategyforepilepsyeegsignalsbasedonconditionalentropyofordinalpatterns |