Cargando…
A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns
Epilepsy is one of the most ordinary neuropathic illnesses, and electroencephalogram (EEG) is the essential method for recording various brain rhythm activities due to its high temporal resolution. The conditional entropy of ordinal patterns (CEOP) is known to be fast and easy to implement, which ca...
Autores principales: | Liu, Xian, Fu, Zhuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597202/ https://www.ncbi.nlm.nih.gov/pubmed/33286861 http://dx.doi.org/10.3390/e22101092 |
Ejemplares similares
-
Ordinal Pattern Based Entropies and the Kolmogorov–Sinai Entropy: An Update
por: Gutjahr, Tim, et al.
Publicado: (2020) -
Change-Point Detection Using the Conditional Entropy of Ordinal Patterns
por: Unakafov, Anton M., et al.
Publicado: (2018) -
Generalized Ordinal Patterns and the KS-Entropy
por: Gutjahr, Tim, et al.
Publicado: (2021) -
Algorithmics, Possibilities and Limits of Ordinal Pattern Based Entropies
por: Piek, Albert B., et al.
Publicado: (2019) -
Classification of EEG Signals Based on Pattern Recognition Approach
por: Amin, Hafeez Ullah, et al.
Publicado: (2017)