Cargando…
Twin Least Square Support Vector Regression Model Based on Gauss-Laplace Mixed Noise Feature with Its Application in Wind Speed Prediction
In this article, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy the single noise distribution, including Gaussian distribution and Laplace distribution, but the mixed distribution. There...
Autores principales: | Zhang, Shiguang, Liu, Chao, Wang, Wei, Chang, Baofang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597209/ https://www.ncbi.nlm.nih.gov/pubmed/33286871 http://dx.doi.org/10.3390/e22101102 |
Ejemplares similares
-
ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction
por: Zhang, Shiguang, et al.
Publicado: (2019) -
Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error
por: Jäntschi, Lorentz, et al.
Publicado: (2016) -
Quasi-least squares regression
por: Shults, Justine, et al.
Publicado: (2014) -
A new regularized least squares support vector regression for gene selection
por: Chen, Pei-Chun, et al.
Publicado: (2009) -
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
por: Wang, Lutao, et al.
Publicado: (2012)