Cargando…
Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality
The curse of dimensionality causes the well-known and widely discussed problems for machine learning methods. There is a hypothesis that using the Manhattan distance and even fractional [Formula: see text] quasinorms (for p less than 1) can help to overcome the curse of dimensionality in classificat...
Autores principales: | Mirkes, Evgeny M., Allohibi, Jeza, Gorban, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597215/ https://www.ncbi.nlm.nih.gov/pubmed/33286874 http://dx.doi.org/10.3390/e22101105 |
Ejemplares similares
-
Quasinormal modes and shadow of noncommutative black hole
por: Campos, J. A. V., et al.
Publicado: (2022) -
High-Dimensional Separability for One- and Few-Shot Learning
por: Gorban, Alexander N., et al.
Publicado: (2021) -
Quasinormal ringdown: the late stage of neutron star mergers
por: Nollert, H P
Publicado: (1997) -
Black Hole Quasinormal Modes and Seiberg–Witten Theory
por: Aminov, Gleb, et al.
Publicado: (2021) -
CNN-Based Spectral Super-Resolution of Panchromatic Night-Time Light Imagery: City-Size-Associated Neighborhood Effects
por: Rybnikova, Nataliya, et al.
Publicado: (2021)