Cargando…
A Consistent Nonparametric Test for Granger Non-Causality Based on the Transfer Entropy
To date, testing for Granger non-causality using kernel density-based nonparametric estimates of the transfer entropy has been hindered by the intractability of the asymptotic distribution of the estimators. We overcome this by shifting from the transfer entropy to its first-order Taylor expansion n...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597253/ https://www.ncbi.nlm.nih.gov/pubmed/33286892 http://dx.doi.org/10.3390/e22101123 |
Sumario: | To date, testing for Granger non-causality using kernel density-based nonparametric estimates of the transfer entropy has been hindered by the intractability of the asymptotic distribution of the estimators. We overcome this by shifting from the transfer entropy to its first-order Taylor expansion near the null hypothesis, which is also non-negative and zero if and only if Granger causality is absent. The estimated Taylor expansion can be expressed in terms of a U-statistic, demonstrating asymptotic normality. After studying its size and power properties numerically, the resulting test is illustrated empirically with applications to stock indices and exchange rates. |
---|