Cargando…
Information-Geometric Optimization with Natural Selection
Evolutionary algorithms, inspired by natural evolution, aim to optimize difficult objective functions without computing derivatives. Here we detail the relationship between classical population genetics of quantitative traits and evolutionary optimization, and formulate a new evolutionary algorithm....
Autores principales: | Otwinowski, Jakub, LaMont, Colin H., Nourmohammad, Armita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597266/ https://www.ncbi.nlm.nih.gov/pubmed/33286736 http://dx.doi.org/10.3390/e22090967 |
Ejemplares similares
-
Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1
por: LaMont, Colin, et al.
Publicado: (2022) -
Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections
por: Nourmohammad, Armita, et al.
Publicado: (2016) -
Fierce Selection and Interference in B-Cell Repertoire Response to Chronic HIV-1
por: Nourmohammad, Armita, et al.
Publicado: (2019) -
Optimal evolutionary decision-making to store immune memory
por: Schnaack, Oskar H, et al.
Publicado: (2021) -
Major antigenic site B of human influenza H3N2 viruses has an evolving local fitness landscape
por: Wu, Nicholas C., et al.
Publicado: (2020)