Cargando…

Deep Learning-Based Security Verification for a Random Number Generator Using White Chaos

In this paper, a deep learning (DL)-based predictive analysis is proposed to analyze the security of a non-deterministic random number generator (NRNG) using white chaos. In particular, the temporal pattern attention (TPA)-based DL model is employed to learn and analyze the data from both stages of...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Cai, Zhang, Jianguo, Sang, Luxiao, Gong, Lishuang, Wang, Longsheng, Wang, Anbang, Wang, Yuncai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597277/
https://www.ncbi.nlm.nih.gov/pubmed/33286903
http://dx.doi.org/10.3390/e22101134
Descripción
Sumario:In this paper, a deep learning (DL)-based predictive analysis is proposed to analyze the security of a non-deterministic random number generator (NRNG) using white chaos. In particular, the temporal pattern attention (TPA)-based DL model is employed to learn and analyze the data from both stages of the NRNG: the output data of a chaotic external-cavity semiconductor laser (ECL) and the final output data of the NRNG. For the ECL stage, the results show that the model successfully detects inherent correlations caused by the time-delay signature. After optical heterodyning of two chaotic ECLs and minimal post-processing are introduced, the model detects no patterns among corresponding data. It demonstrates that the NRNG has the strong resistance against the predictive model. Prior to these works, the powerful predictive capability of the model is investigated and demonstrated by applying it to a random number generator (RNG) using linear congruential algorithm. Our research shows that the DL-based predictive model is expected to provide an efficient supplement for evaluating the security and quality of RNGs.