Cargando…
Deep Learning-Based Security Verification for a Random Number Generator Using White Chaos
In this paper, a deep learning (DL)-based predictive analysis is proposed to analyze the security of a non-deterministic random number generator (NRNG) using white chaos. In particular, the temporal pattern attention (TPA)-based DL model is employed to learn and analyze the data from both stages of...
Autores principales: | Li, Cai, Zhang, Jianguo, Sang, Luxiao, Gong, Lishuang, Wang, Longsheng, Wang, Anbang, Wang, Yuncai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597277/ https://www.ncbi.nlm.nih.gov/pubmed/33286903 http://dx.doi.org/10.3390/e22101134 |
Ejemplares similares
-
0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry–Perot lasers
por: Gao, Hua, et al.
Publicado: (2021) -
Security Chaos Engineering
por: Rinehart, Aaron, et al.
Publicado: (2020) -
An Analysis of Deterministic Chaos as an Entropy Source for Random Number Generators
por: Demir, Kaya, et al.
Publicado: (2018) -
Harnessing microcomb-based parallel chaos for random number generation and optical decision making
por: Shen, Bitao, et al.
Publicado: (2023) -
Assessment of Human Random Number Generation for Biometric Verification
por: Jokar, Elham, et al.
Publicado: (2012)