Cargando…
Global Co-Occurrence Feature and Local Spatial Feature Learning for Skeleton-Based Action Recognition
Recent progress on skeleton-based action recognition has been substantial, benefiting mostly from the explosive development of Graph Convolutional Networks (GCN). However, prevailing GCN-based methods may not effectively capture the global co-occurrence features among joints and the local spatial st...
Autores principales: | Xie, Jun, Xin, Wentian, Liu, Ruyi, Miao, Qiguang, Sheng, Lijie, Zhang, Liang, Gao, Xuesong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597279/ https://www.ncbi.nlm.nih.gov/pubmed/33286904 http://dx.doi.org/10.3390/e22101135 |
Ejemplares similares
-
Human Activity Recognition by Sequences of Skeleton Features
por: Ramirez, Heilym, et al.
Publicado: (2022) -
Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
por: Zhang, Haiping, et al.
Publicado: (2023) -
Feature Fusion of Deep Spatial Features and Handcrafted Spatiotemporal Features for Human Action Recognition
por: Uddin, Md Azher, et al.
Publicado: (2019) -
TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition
por: Wang, Kaixuan, et al.
Publicado: (2023) -
Robust Action Recognition Using Multi-Scale Spatial-Temporal Concatenations of Local Features as Natural Action Structures
por: Zhu, Xiaoyuan, et al.
Publicado: (2012)