Cargando…
Analysis of Information-Based Nonparametric Variable Selection Criteria
We consider a nonparametric Generative Tree Model and discuss a problem of selecting active predictors for the response in such scenario. We investigated two popular information-based selection criteria: Conditional Infomax Feature Extraction (CIFE) and Joint Mutual information (JMI), which are both...
Autores principales: | Łazęcka, Małgorzata, Mielniczuk, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597280/ https://www.ncbi.nlm.nih.gov/pubmed/33286743 http://dx.doi.org/10.3390/e22090974 |
Ejemplares similares
-
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
por: Mielniczuk, Jan
Publicado: (2022) -
Distributions of a General Reduced-Order Dependence Measure and Conditional Independence Testing
por: Kubkowski, Mariusz, et al.
Publicado: (2020) -
Different Strategies of Fitting Logistic Regression for Positive and Unlabelled Data
por: Teisseyre, Paweł, et al.
Publicado: (2020) -
Information Theoretic Methods for Variable Selection—A Review
por: Mielniczuk, Jan
Publicado: (2022) -
A Novel Nonparametric Feature Selection Approach Based on Mutual Information Transfer Network
por: Li, Kunmei, et al.
Publicado: (2022)