Cargando…
Entropy Monotonicity and Superstable Cycles for the Quadratic Family Revisited
The main result of this paper is a proof using real analysis of the monotonicity of the topological entropy for the family of quadratic maps, sometimes called Milnor’s Monotonicity Conjecture. In contrast, the existing proofs rely in one way or another on complex analysis. Our proof is based on tool...
Autores principales: | Amigó, José M., Giménez, Ángel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597281/ https://www.ncbi.nlm.nih.gov/pubmed/33286905 http://dx.doi.org/10.3390/e22101136 |
Ejemplares similares
-
Quadratic convergence of monotone iterates for semilinear elliptic obstacle problems
por: Zeng, Jinping, et al.
Publicado: (2017) -
Inverting Monotonic Nonlinearities by Entropy Maximization
por: Solé-Casals, Jordi, et al.
Publicado: (2016) -
Alkyne-Functionalized
Superstable Graphitic Silver
Nanoparticles for Raman Imaging
por: Song, Zhi-Ling, et al.
Publicado: (2014) -
Bridging the preoperative gap of precision hepatectomy: Superstable homogeneous iodinated formulation technology()
por: Wang, Zhe, et al.
Publicado: (2020) -
Superstable
Wet Foams and Lightweight Solid Composites
from Nanocellulose and Hydrophobic Particles
por: Abidnejad, Roozbeh, et al.
Publicado: (2021)