Cargando…
Development of Automated Sleep Stage Classification System Using Multivariate Projection-Based Fixed Boundary Empirical Wavelet Transform and Entropy Features Extracted from Multichannel EEG Signals
The categorization of sleep stages helps to diagnose different sleep-related ailments. In this paper, an entropy-based information–theoretic approach is introduced for the automated categorization of sleep stages using multi-channel electroencephalogram (EEG) signals. This approach comprises of thre...
Autores principales: | Tripathy, Rajesh Kumar, Ghosh, Samit Kumar, Gajbhiye, Pranjali, Acharya, U. Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597285/ https://www.ncbi.nlm.nih.gov/pubmed/33286910 http://dx.doi.org/10.3390/e22101141 |
Ejemplares similares
-
Noise-assisted multivariate empirical mode decomposition for multichannel EMG signals
por: Zhang, Yi, et al.
Publicado: (2017) -
Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP’s in multichannel EEGs
por: Padma Shri, T. K., et al.
Publicado: (2017) -
Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
por: Aung, Si Thu, et al.
Publicado: (2022) -
Multivariate wavelet frames
por: Skopina, Maria, et al.
Publicado: (2016) -
Spatiotemporal Analysis of Multichannel EEG: CARTOOL
por: Brunet, Denis, et al.
Publicado: (2011)