Cargando…
Partial Classifier Chains with Feature Selection by Exploiting Label Correlation in Multi-Label Classification
Multi-label classification (MLC) is a supervised learning problem where an object is naturally associated with multiple concepts because it can be described from various dimensions. How to exploit the resulting label correlations is the key issue in MLC problems. The classifier chain (CC) is a well-...
Autores principales: | Wang, Zhenwu, Wang, Tielin, Wan, Benting, Han, Mengjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597295/ https://www.ncbi.nlm.nih.gov/pubmed/33286912 http://dx.doi.org/10.3390/e22101143 |
Ejemplares similares
-
Autoregressive count data modeling on mobility patterns to predict cases of COVID-19 infection
por: Zhao, Jing, et al.
Publicado: (2022) -
A novel framework based on the multi-label classification for dynamic selection of classifiers
por: Elmi, Javad, et al.
Publicado: (2023) -
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
por: He, Zhi-Fen, et al.
Publicado: (2022) -
Multi-Label Feature Selection Based on High-Order Label Correlation Assumption
por: Zhang, Ping, et al.
Publicado: (2020) -
Online Multi-Label Streaming Feature Selection Based on Label Group Correlation and Feature Interaction
por: Liu, Jinghua, et al.
Publicado: (2023)