Cargando…

The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications

In this article, a new three parameters lifetime model called the Topp-Leone Generalized Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived, including moments, quantile function, survival function, hazard rate function, mean deviation and mode. The m...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Saiary, Zakeia A., Bakoban, Rana A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597297/
https://www.ncbi.nlm.nih.gov/pubmed/33286913
http://dx.doi.org/10.3390/e22101144
_version_ 1783602315404509184
author Al-Saiary, Zakeia A.
Bakoban, Rana A.
author_facet Al-Saiary, Zakeia A.
Bakoban, Rana A.
author_sort Al-Saiary, Zakeia A.
collection PubMed
description In this article, a new three parameters lifetime model called the Topp-Leone Generalized Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived, including moments, quantile function, survival function, hazard rate function, mean deviation and mode. The method of maximum likelihood is used to estimate the unknown parameters. The properties of the maximum likelihood estimators using Fisher information matrix are studied. Three real data sets are applied for illustrative purpose of this study.
format Online
Article
Text
id pubmed-7597297
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75972972020-11-09 The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications Al-Saiary, Zakeia A. Bakoban, Rana A. Entropy (Basel) Article In this article, a new three parameters lifetime model called the Topp-Leone Generalized Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived, including moments, quantile function, survival function, hazard rate function, mean deviation and mode. The method of maximum likelihood is used to estimate the unknown parameters. The properties of the maximum likelihood estimators using Fisher information matrix are studied. Three real data sets are applied for illustrative purpose of this study. MDPI 2020-10-11 /pmc/articles/PMC7597297/ /pubmed/33286913 http://dx.doi.org/10.3390/e22101144 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Al-Saiary, Zakeia A.
Bakoban, Rana A.
The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications
title The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications
title_full The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications
title_fullStr The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications
title_full_unstemmed The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications
title_short The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications
title_sort topp-leone generalized inverted exponential distribution with real data applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597297/
https://www.ncbi.nlm.nih.gov/pubmed/33286913
http://dx.doi.org/10.3390/e22101144
work_keys_str_mv AT alsaiaryzakeiaa thetoppleonegeneralizedinvertedexponentialdistributionwithrealdataapplications
AT bakobanranaa thetoppleonegeneralizedinvertedexponentialdistributionwithrealdataapplications
AT alsaiaryzakeiaa toppleonegeneralizedinvertedexponentialdistributionwithrealdataapplications
AT bakobanranaa toppleonegeneralizedinvertedexponentialdistributionwithrealdataapplications