Cargando…
Lagrangian Submanifolds of Symplectic Structures Induced by Divergence Functions
Divergence functions play a relevant role in Information Geometry as they allow for the introduction of a Riemannian metric and a dual connection structure on a finite dimensional manifold of probability distributions. They also allow to define, in a canonical way, a symplectic structure on the squa...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597298/ https://www.ncbi.nlm.nih.gov/pubmed/33286752 http://dx.doi.org/10.3390/e22090983 |
Sumario: | Divergence functions play a relevant role in Information Geometry as they allow for the introduction of a Riemannian metric and a dual connection structure on a finite dimensional manifold of probability distributions. They also allow to define, in a canonical way, a symplectic structure on the square of the above manifold of probability distributions, a property that has received less attention in the literature until recent contributions. In this paper, we hint at a possible application: we study Lagrangian submanifolds of this symplectic structure and show that they are useful for describing the manifold of solutions of the Maximum Entropy principle. |
---|