Cargando…

Energy Efficiency Optimization in Massive MIMO Secure Multicast Transmission

Herein, we focus on energy efficiency optimization for massive multiple-input multiple-output (MIMO) downlink secure multicast transmission exploiting statistical channel state information (CSI). Privacy engineering in the field of communication is a hot issue under study. The common signal transmit...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Bin, Qu, Linbo, Huang, Yufei, Zheng, Yifei, You, Li, Wang, Wenjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597299/
https://www.ncbi.nlm.nih.gov/pubmed/33286914
http://dx.doi.org/10.3390/e22101145
Descripción
Sumario:Herein, we focus on energy efficiency optimization for massive multiple-input multiple-output (MIMO) downlink secure multicast transmission exploiting statistical channel state information (CSI). Privacy engineering in the field of communication is a hot issue under study. The common signal transmitted by the base station is multicast transmitted to multiple legitimate user terminals in our system, but an eavesdropper might eavesdrop this signal. To achieve the energy efficiency utility–privacy trade-off of multicast transmission, we set up the problem of maximizing the energy efficiency which is defined as the ratio of the secure transmit rate to the power consumption. To simplify the formulated nonconvex problem, we use a lower bound of the secure multicast rate as the molecule of the design objective. We then obtain the eigenvector of the optimal transmit covariance matrix into a closed-form, simplifying the matrix-valued multicast transmission strategy problem into a power allocation problem in the beam domain. By utilizing the Minorize-Maximize method, an iterative algorithm is proposed to decompose the secure energy efficiency optimization problem into a sequence of iterative fractional programming subproblems. By using Dinkelbach’s transform, each subproblem becomes an iterative problem with the concave objective function, and it can be solved by classical convex optimization. We guarantee the convergence of the two-level iterative algorithm that we propose. Besides, we reduce the computational complexity of the algorithm by substituting the design objective with its deterministic equivalent. The numerical results show that the approach we propose performs well compared with the conventional methods.