Cargando…
Antifragility Predicts the Robustness and Evolvability of Biological Networks through Multi-Class Classification with a Convolutional Neural Network
Robustness and evolvability are essential properties to the evolution of biological networks. To determine if a biological network is robust and/or evolvable, it is required to compare its functions before and after mutations. However, this sometimes takes a high computational cost as the network si...
Autores principales: | Kim, Hyobin, Muñoz, Stalin, Osuna, Pamela, Gershenson, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597304/ https://www.ncbi.nlm.nih.gov/pubmed/33286756 http://dx.doi.org/10.3390/e22090986 |
Ejemplares similares
-
Stocks and cryptocurrencies: Antifragile or robust? A novel antifragility measure of the stock and cryptocurrency markets
por: Alatorre, Darío, et al.
Publicado: (2023) -
Temporal, Structural, and Functional Heterogeneities Extend Criticality and Antifragility in Random Boolean Networks
por: López-Díaz, Amahury Jafet, et al.
Publicado: (2023) -
Ecosystem antifragility: beyond integrity and resilience
por: Equihua, Miguel, et al.
Publicado: (2020) -
A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease
por: Mehmood, Atif, et al.
Publicado: (2020) -
Multi-view classification with convolutional neural networks
por: Seeland, Marco, et al.
Publicado: (2021)