Cargando…
Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory
Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE)...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597320/ https://www.ncbi.nlm.nih.gov/pubmed/33286762 http://dx.doi.org/10.3390/e22090993 |
_version_ | 1783602321072062464 |
---|---|
author | Yang, Bin Gan, Dingyi Tang, Yongchuan Lei, Yan |
author_facet | Yang, Bin Gan, Dingyi Tang, Yongchuan Lei, Yan |
author_sort | Yang, Bin |
collection | PubMed |
description | Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified. |
format | Online Article Text |
id | pubmed-7597320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75973202020-11-09 Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory Yang, Bin Gan, Dingyi Tang, Yongchuan Lei, Yan Entropy (Basel) Article Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified. MDPI 2020-09-07 /pmc/articles/PMC7597320/ /pubmed/33286762 http://dx.doi.org/10.3390/e22090993 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Bin Gan, Dingyi Tang, Yongchuan Lei, Yan Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory |
title | Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory |
title_full | Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory |
title_fullStr | Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory |
title_full_unstemmed | Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory |
title_short | Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory |
title_sort | incomplete information management using an improved belief entropy in dempster-shafer evidence theory |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597320/ https://www.ncbi.nlm.nih.gov/pubmed/33286762 http://dx.doi.org/10.3390/e22090993 |
work_keys_str_mv | AT yangbin incompleteinformationmanagementusinganimprovedbeliefentropyindempstershaferevidencetheory AT gandingyi incompleteinformationmanagementusinganimprovedbeliefentropyindempstershaferevidencetheory AT tangyongchuan incompleteinformationmanagementusinganimprovedbeliefentropyindempstershaferevidencetheory AT leiyan incompleteinformationmanagementusinganimprovedbeliefentropyindempstershaferevidencetheory |