Cargando…
A Novel Method Based on Multi-Island Genetic Algorithm Improved Variational Mode Decomposition and Multi-Features for Fault Diagnosis of Rolling Bearing
Aiming at the problem that it is difficult to extract fault features from the nonlinear and non-stationary vibration signals of wind turbine rolling bearings, which leads to the low diagnosis and recognition rate, a feature extraction method based on multi-island genetic algorithm (MIGA) improved va...
Autores principales: | Liang, Tao, Lu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597321/ https://www.ncbi.nlm.nih.gov/pubmed/33286764 http://dx.doi.org/10.3390/e22090995 |
Ejemplares similares
-
Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm
por: Shi, Ruimin, et al.
Publicado: (2022) -
Application of Parameter Optimized Variational Mode Decomposition Method in Fault Feature Extraction of Rolling Bearing
por: Liang, Tao, et al.
Publicado: (2021) -
Fault Diagnosis for Rolling Bearings Using Optimized Variational Mode Decomposition and Resonance Demodulation
por: Zhang, Chunguang, et al.
Publicado: (2020) -
Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index
por: Guo, Yuanjing, et al.
Publicado: (2022) -
Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
por: Dang, Zhang, et al.
Publicado: (2018)