Cargando…
Long-Range Dependent Traffic Classification with Convolutional Neural Networks Based on Hurst Exponent Analysis
The paper examines the ability of neural networks to classify Internet traffic data in terms of self-similarity expressed by the Hurst exponent. Fractional Gaussian noise is used for the generation of synthetic data for modeling the genuine ones. It is presented that the trained model is capable of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597326/ https://www.ncbi.nlm.nih.gov/pubmed/33286928 http://dx.doi.org/10.3390/e22101159 |