Cargando…
Knowledge Graph Completion for the Chinese Text of Cultural Relics Based on Bidirectional Encoder Representations from Transformers with Entity-Type Information
Knowledge graph completion can make knowledge graphs more complete, which is a meaningful research topic. However, the existing methods do not make full use of entity semantic information. Another challenge is that a deep model requires large-scale manually labelled data, which greatly increases man...
Autores principales: | Zhang, Min, Geng, Guohua, Zeng, Sheng, Jia, Huaping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597339/ https://www.ncbi.nlm.nih.gov/pubmed/33286937 http://dx.doi.org/10.3390/e22101168 |
Ejemplares similares
-
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Named entity disambiguation in short texts over knowledge graphs
por: Bouarroudj, Wissem, et al.
Publicado: (2022) -
A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation
por: Stojanov, Riste, et al.
Publicado: (2021) -
Using Character-Level and Entity-Level Representations to Enhance Bidirectional Encoder Representation From Transformers-Based Clinical Semantic Textual Similarity Model: ClinicalSTS Modeling Study
por: Xiong, Ying, et al.
Publicado: (2020) -
Incremental Multi-source Entity Resolution for Knowledge Graph Completion
por: Saeedi, Alieh, et al.
Publicado: (2020)