Cargando…
Segmentation of High Dimensional Time-Series Data Using Mixture of Sparse Principal Component Regression Model with Information Complexity
This paper presents a new and novel hybrid modeling method for the segmentation of high dimensional time-series data using the mixture of the sparse principal components regression (MIX-SPCR) model with information complexity ([Formula: see text]) criterion as the fitness function. Our approach enco...
Autores principales: | Sun, Yaojin, Bozdogan, Hamparsum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597341/ https://www.ncbi.nlm.nih.gov/pubmed/33286939 http://dx.doi.org/10.3390/e22101170 |
Ejemplares similares
-
A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification
por: Pamukçu, Esra, et al.
Publicado: (2015) -
Obtaining insights from high-dimensional data: sparse principal covariates regression
por: Van Deun, Katrijn, et al.
Publicado: (2018) -
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017) -
Applying stability selection to consistently estimate sparse principal components in high-dimensional molecular data
por: Sill, Martin, et al.
Publicado: (2015)