Cargando…
Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity
Geometric phases are used to construct quantum gates since it naturally resists local noises, acting as the modularized units of geometric quantum computing. Meanwhile, fast nonadiabatic geometric gates are required for reducing the information loss induced by decoherence. Here, we propose a digital...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597346/ https://www.ncbi.nlm.nih.gov/pubmed/33286943 http://dx.doi.org/10.3390/e22101175 |
Sumario: | Geometric phases are used to construct quantum gates since it naturally resists local noises, acting as the modularized units of geometric quantum computing. Meanwhile, fast nonadiabatic geometric gates are required for reducing the information loss induced by decoherence. Here, we propose a digital simulation of nonadiabatic geometric quantum gates in terms of shortcuts to adiabaticity (STA). More specifically, we combine the invariant-based inverse engineering with optimal control theory for designing the fast and robust Abelian geometric gates against systematic error, in the context of two-level qubit systems. We exemplify X and T gates, in which the fidelities and robustness are evaluated by simulations in ideal quantum circuits. Our results can also be extended to constructing two-qubit gates, for example, a controlled-PHASE gate, which shares the equivalent effective Hamiltonian with rotation around the Z-axis of a single qubit. These STA-inspired nonadiabatic geometric gates can realize quantum error correction physically, leading to fault-tolerant quantum computing in the Noisy Intermediate-Scale Quantum (NISQ) era. |
---|