Cargando…

Molecular characterization, mRNA gene expression, and antimicrobial activity of 2 new cathelicidin genes in goose

Cathelicidins represent a major group of host defense peptides (HDPs) that share a highly conserved cathelin-like domain. In birds, this gene family has been identified in many species. However, no information was available in the goose until now. In this study, we present the molecular characteriza...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Yingping, Lyu, Wentao, Yang, Hua, Xu, Xiaoqin, Zhou, Caiquan, Lu, Lizhi, Zhang, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597728/
https://www.ncbi.nlm.nih.gov/pubmed/32475433
http://dx.doi.org/10.1016/j.psj.2020.03.021
Descripción
Sumario:Cathelicidins represent a major group of host defense peptides (HDPs) that share a highly conserved cathelin-like domain. In birds, this gene family has been identified in many species. However, no information was available in the goose until now. In this study, we present the molecular characterization of 2 goose cathelicidin genes, namely goose CATH2 and goose CATH3, for the first time. The complete cDNA of goose CATH2 and goose CATH3 were 571 bp and 573 bp in length, respectively, and the deduced amino acid sequences exhibited high similarity with other avian cathelicidins. Furthermore, evolutionary analyses indicated that all known cathelicidins form 3 distinct clusters from reptiles, while the oldest cathelicidin member, which is known as CATHB1, is very likely absent in the goose genome. Meanwhile, highly expressed goose CATH2 and goose CATH3 were also observed in primary and secondary lymphoid tissues, same as the observations in other avian species. In addition, chemically synthesized mature peptides of the 2 cathelicidins exerted optimal antimicrobial abilities to a range of gram-negative and gram-positive bacteria. The discovery and characterization of goose cathelicidins complete the knowledge for goose HDPs and might contribute to understanding the evolution of avian cathelicidins as well as for the development of antibacterial agents.