Cargando…
Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment
The objective of this study was to evaluate the efficacy of flushing surfaces with untreated feed vs. the use of 2 different dry chemical sanitizers on residual surface and feed Salmonella Enteritidis contamination. First, a Salmonella-negative batch of poultry feed was mixed in 9 laboratory-scale p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597915/ https://www.ncbi.nlm.nih.gov/pubmed/32731970 http://dx.doi.org/10.1016/j.psj.2020.04.016 |
_version_ | 1783602471905525760 |
---|---|
author | Muckey, Mary Huss, Anne R. Yoder, Ashton Jones, Cassandra |
author_facet | Muckey, Mary Huss, Anne R. Yoder, Ashton Jones, Cassandra |
author_sort | Muckey, Mary |
collection | PubMed |
description | The objective of this study was to evaluate the efficacy of flushing surfaces with untreated feed vs. the use of 2 different dry chemical sanitizers on residual surface and feed Salmonella Enteritidis contamination. First, a Salmonella-negative batch of poultry feed was mixed in 9 laboratory-scale paddle mixers. A feed sample was collected, and targeted locations on surfaces within the mixer were swabbed to confirm Salmonella-negative. Next, a Salmonella-positive batch of poultry feed was mixed, sampled, and mixer surfaces swabbed. Mean Salmonella Enteritidis contamination across all 9 mixers were 3.63 cfu/g for sampled feed and 1.27 cfu/cm(2) for surface contamination. Next, the mixers manufactured one of the following treatments (3 mixers/treatment): 1) none (control); 2) a commercially available essential oil blend; or 3) rice hulls treated with a 10% concentration of a propriety blend of medium-chain fatty acids (MCFA). After each treatment, each mixer manufactured another 2 batches of Salmonella-free feed (sequence 1 and sequence 2). Feed samples were collected, and surfaces were swabbed between each batch of feed. Manufacturing sequence (P < 0.0001) but not treatment (P > 0.05) impacted feed or surface contamination of Salmonella Enteritidis. There was Salmonella-positive residue in the batch of feed manufactured immediately after the positive control batch. However, no Salmonella residue was detected in batches of feed treated with either the commercial essential oil blend or MCFA. Low levels of Salmonella residue were observed from either feed (0.7 cfu/g for commercial essential oil blend) or surfaces (0.1 cfu/cm(2) for MCFA) manufactured in sequence 1, but no residue was observed in sequence 2. These data suggest that sequencing of feed during manufacturing reduces Salmonella-positive contamination within animal food and on manufacturing surfaces, particularly after the second batch or with the use of chemical treatments. |
format | Online Article Text |
id | pubmed-7597915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75979152020-11-03 Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment Muckey, Mary Huss, Anne R. Yoder, Ashton Jones, Cassandra Poult Sci Immunology, Health and Disease The objective of this study was to evaluate the efficacy of flushing surfaces with untreated feed vs. the use of 2 different dry chemical sanitizers on residual surface and feed Salmonella Enteritidis contamination. First, a Salmonella-negative batch of poultry feed was mixed in 9 laboratory-scale paddle mixers. A feed sample was collected, and targeted locations on surfaces within the mixer were swabbed to confirm Salmonella-negative. Next, a Salmonella-positive batch of poultry feed was mixed, sampled, and mixer surfaces swabbed. Mean Salmonella Enteritidis contamination across all 9 mixers were 3.63 cfu/g for sampled feed and 1.27 cfu/cm(2) for surface contamination. Next, the mixers manufactured one of the following treatments (3 mixers/treatment): 1) none (control); 2) a commercially available essential oil blend; or 3) rice hulls treated with a 10% concentration of a propriety blend of medium-chain fatty acids (MCFA). After each treatment, each mixer manufactured another 2 batches of Salmonella-free feed (sequence 1 and sequence 2). Feed samples were collected, and surfaces were swabbed between each batch of feed. Manufacturing sequence (P < 0.0001) but not treatment (P > 0.05) impacted feed or surface contamination of Salmonella Enteritidis. There was Salmonella-positive residue in the batch of feed manufactured immediately after the positive control batch. However, no Salmonella residue was detected in batches of feed treated with either the commercial essential oil blend or MCFA. Low levels of Salmonella residue were observed from either feed (0.7 cfu/g for commercial essential oil blend) or surfaces (0.1 cfu/cm(2) for MCFA) manufactured in sequence 1, but no residue was observed in sequence 2. These data suggest that sequencing of feed during manufacturing reduces Salmonella-positive contamination within animal food and on manufacturing surfaces, particularly after the second batch or with the use of chemical treatments. Elsevier 2020-05-15 /pmc/articles/PMC7597915/ /pubmed/32731970 http://dx.doi.org/10.1016/j.psj.2020.04.016 Text en © 2020 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Immunology, Health and Disease Muckey, Mary Huss, Anne R. Yoder, Ashton Jones, Cassandra Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment |
title | Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment |
title_full | Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment |
title_fullStr | Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment |
title_full_unstemmed | Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment |
title_short | Research Note: Evaluating the roles of surface sanitation and feed sequencing on mitigating Salmonella Enteritidis contamination on animal food manufacturing equipment |
title_sort | research note: evaluating the roles of surface sanitation and feed sequencing on mitigating salmonella enteritidis contamination on animal food manufacturing equipment |
topic | Immunology, Health and Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597915/ https://www.ncbi.nlm.nih.gov/pubmed/32731970 http://dx.doi.org/10.1016/j.psj.2020.04.016 |
work_keys_str_mv | AT muckeymary researchnoteevaluatingtherolesofsurfacesanitationandfeedsequencingonmitigatingsalmonellaenteritidiscontaminationonanimalfoodmanufacturingequipment AT hussanner researchnoteevaluatingtherolesofsurfacesanitationandfeedsequencingonmitigatingsalmonellaenteritidiscontaminationonanimalfoodmanufacturingequipment AT yoderashton researchnoteevaluatingtherolesofsurfacesanitationandfeedsequencingonmitigatingsalmonellaenteritidiscontaminationonanimalfoodmanufacturingequipment AT jonescassandra researchnoteevaluatingtherolesofsurfacesanitationandfeedsequencingonmitigatingsalmonellaenteritidiscontaminationonanimalfoodmanufacturingequipment |