Cargando…
Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine
OBJECTIVES: The aims of this study were, first, to evaluate a deep learning–based, automatic glioblastoma (GB) tumor segmentation algorithm on clinical routine data from multiple centers and compare the results to a ground truth, manual expert segmentation, and second, to evaluate the quality of the...
Autores principales: | Perkuhn, Michael, Stavrinou, Pantelis, Thiele, Frank, Shakirin, Georgy, Mohan, Manoj, Garmpis, Dionysios, Kabbasch, Christoph, Borggrefe, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598095/ https://www.ncbi.nlm.nih.gov/pubmed/29863600 http://dx.doi.org/10.1097/RLI.0000000000000484 |
Ejemplares similares
-
Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
por: Laukamp, Kai Roman, et al.
Publicado: (2018) -
Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning
por: Shahzad, Rahil, et al.
Publicado: (2020) -
Comparison of Accuracy of Arrival-Time-Insensitive and Arrival-Time-Sensitive CTP Algorithms for Prediction of Infarct Tissue Volumes
por: Pennig, Lenhard, et al.
Publicado: (2020) -
Impact of time to initiation of radiotherapy on survival after resection of newly diagnosed glioblastoma
por: Katsigiannis, Sotirios, et al.
Publicado: (2019) -
Treatment of Intracranial Aneurysms with the Pipeline Embolization Device Only: a Single Center Experience
por: Volker, Maus, et al.
Publicado: (2018)