Cargando…
Risk assessment of SARS-CoV-2 in Antarctic wildlife
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a sugg...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598351/ https://www.ncbi.nlm.nih.gov/pubmed/33162142 http://dx.doi.org/10.1016/j.scitotenv.2020.143352 |
_version_ | 1783602582212575232 |
---|---|
author | Barbosa, Andrés Varsani, Arvind Morandini, Virginia Grimaldi, Wray Vanstreels, Ralph E.T. Diaz, Julia I. Boulinier, Thierry Dewar, Meagan González-Acuña, Daniel Gray, Rachael McMahon, Clive R. Miller, Gary Power, Michelle Gamble, Amandine Wille, Michelle |
author_facet | Barbosa, Andrés Varsani, Arvind Morandini, Virginia Grimaldi, Wray Vanstreels, Ralph E.T. Diaz, Julia I. Boulinier, Thierry Dewar, Meagan González-Acuña, Daniel Gray, Rachael McMahon, Clive R. Miller, Gary Power, Michelle Gamble, Amandine Wille, Michelle |
author_sort | Barbosa, Andrés |
collection | PubMed |
description | The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue. |
format | Online Article Text |
id | pubmed-7598351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Authors. Published by Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75983512020-11-02 Risk assessment of SARS-CoV-2 in Antarctic wildlife Barbosa, Andrés Varsani, Arvind Morandini, Virginia Grimaldi, Wray Vanstreels, Ralph E.T. Diaz, Julia I. Boulinier, Thierry Dewar, Meagan González-Acuña, Daniel Gray, Rachael McMahon, Clive R. Miller, Gary Power, Michelle Gamble, Amandine Wille, Michelle Sci Total Environ Article The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue. The Authors. Published by Elsevier B.V. 2021-02-10 2020-10-29 /pmc/articles/PMC7598351/ /pubmed/33162142 http://dx.doi.org/10.1016/j.scitotenv.2020.143352 Text en © 2020 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Barbosa, Andrés Varsani, Arvind Morandini, Virginia Grimaldi, Wray Vanstreels, Ralph E.T. Diaz, Julia I. Boulinier, Thierry Dewar, Meagan González-Acuña, Daniel Gray, Rachael McMahon, Clive R. Miller, Gary Power, Michelle Gamble, Amandine Wille, Michelle Risk assessment of SARS-CoV-2 in Antarctic wildlife |
title | Risk assessment of SARS-CoV-2 in Antarctic wildlife |
title_full | Risk assessment of SARS-CoV-2 in Antarctic wildlife |
title_fullStr | Risk assessment of SARS-CoV-2 in Antarctic wildlife |
title_full_unstemmed | Risk assessment of SARS-CoV-2 in Antarctic wildlife |
title_short | Risk assessment of SARS-CoV-2 in Antarctic wildlife |
title_sort | risk assessment of sars-cov-2 in antarctic wildlife |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598351/ https://www.ncbi.nlm.nih.gov/pubmed/33162142 http://dx.doi.org/10.1016/j.scitotenv.2020.143352 |
work_keys_str_mv | AT barbosaandres riskassessmentofsarscov2inantarcticwildlife AT varsaniarvind riskassessmentofsarscov2inantarcticwildlife AT morandinivirginia riskassessmentofsarscov2inantarcticwildlife AT grimaldiwray riskassessmentofsarscov2inantarcticwildlife AT vanstreelsralphet riskassessmentofsarscov2inantarcticwildlife AT diazjuliai riskassessmentofsarscov2inantarcticwildlife AT boulinierthierry riskassessmentofsarscov2inantarcticwildlife AT dewarmeagan riskassessmentofsarscov2inantarcticwildlife AT gonzalezacunadaniel riskassessmentofsarscov2inantarcticwildlife AT grayrachael riskassessmentofsarscov2inantarcticwildlife AT mcmahoncliver riskassessmentofsarscov2inantarcticwildlife AT millergary riskassessmentofsarscov2inantarcticwildlife AT powermichelle riskassessmentofsarscov2inantarcticwildlife AT gambleamandine riskassessmentofsarscov2inantarcticwildlife AT willemichelle riskassessmentofsarscov2inantarcticwildlife |