Cargando…

Spiny mice (Acomys) exhibit attenuated hallmarks of aging and rapid cell turnover after UV exposure in the skin epidermis

The study of long-lived and regenerative animal models has revealed diverse protective responses to stressors such as aging and tissue injury. Spiny mice (Acomys) are a unique mammalian model of skin wound regeneration, but their response to other types of physiological skin damage has not been inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Wesley, Kim, Austin, Monaghan, James R., Seifert, Ashley W., Maden, Malcolm, Crane, Justin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598470/
https://www.ncbi.nlm.nih.gov/pubmed/33125436
http://dx.doi.org/10.1371/journal.pone.0241617
Descripción
Sumario:The study of long-lived and regenerative animal models has revealed diverse protective responses to stressors such as aging and tissue injury. Spiny mice (Acomys) are a unique mammalian model of skin wound regeneration, but their response to other types of physiological skin damage has not been investigated. In this study, we examine how spiny mouse skin responds to acute UVB damage or chronological aging compared to non-regenerative C57Bl/6 mice (M. musculus). We find that, compared to M. musculus, the skin epidermis in A. cahirinus experiences a similar UVB-induced increase in basal cell proliferation but exhibits increased epidermal turnover. Notably, A. cahirinus uniquely form a suprabasal layer co-expressing Keratin 14 and Keratin 10 after UVB exposure concomitant with reduced epidermal inflammatory signaling and reduced markers of DNA damage. In the context of aging, old M. musculus animals exhibit typical hallmarks including epidermal thinning, increased inflammatory signaling and senescence. However, these age-related changes are absent in old A. cahirinus skin. Overall, we find that A. cahirinus have evolved novel responses to skin damage that reveals new aspects of its regenerative phenotype.