Cargando…

Efficient simulation of non-Markovian dynamics on complex networks

We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow...

Descripción completa

Detalles Bibliográficos
Autores principales: Großmann, Gerrit, Bortolussi, Luca, Wolf, Verena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598478/
https://www.ncbi.nlm.nih.gov/pubmed/33125408
http://dx.doi.org/10.1371/journal.pone.0241394
Descripción
Sumario:We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred—sometimes the only feasible—approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, event-driven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.