Cargando…

Associations between daily ambient temperature and sedentary time among children 4–6 years old in Mexico City

BACKGROUND: Sedentary behavior is a worldwide public health concern. There is consistent and growing evidence linking sedentary behavior to mortality and morbidity. Early monitoring and assessment of environmental factors associated with sedentary behaviors at a young age are important initial steps...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Sandy, Cantoral, Alejandra, Téllez-Rojo, Martha María, Pantic, Ivan, Oken, Emily, Svensson, Katherine, Dorman, Michael, Gutiérrez-Avila, Iván, Rush, Johnathan, McRae, Nia, Wright, Robert O., Baccarelli, Andrea A., Kloog, Itai, Just, Allan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598506/
https://www.ncbi.nlm.nih.gov/pubmed/33125398
http://dx.doi.org/10.1371/journal.pone.0241446
Descripción
Sumario:BACKGROUND: Sedentary behavior is a worldwide public health concern. There is consistent and growing evidence linking sedentary behavior to mortality and morbidity. Early monitoring and assessment of environmental factors associated with sedentary behaviors at a young age are important initial steps for understanding children’s sedentary time and identifying pertinent interventions. OBJECTIVE: This study examines the association between daily temperature (maximum, mean, minimum, and diurnal variation) and all-day sedentary time among 4–6 year old children in Mexico City (n = 559) from the year 2013 to 2015. METHODS: We developed a spatiotemporally resolved hybrid satellite-based land use regression temperature model and calculated percent daily sedentary time from aggregating 10-second epoch vertical counts captured by accelerometers that participants wore for one week. We modeled generalized additive models (GAMs), one for each temperature type as a covariate (maximum, mean, minimum, and diurnal variation). All GAMs included percent all-day sedentary time as the outcome and participant-level random intercepts to account for repeated measures of sedentary time. Our models were adjusted for demographic factors and environmental exposures. RESULTS: Daily maximum temperature, mean temperature, and diurnal variation have significant negative linear relationships with all-day sedentary time (p<0.01). There is no significant association between daily minimum temperature and all-day sedentary time. Children have on average 0.26% less daily sedentary time (approximately 2.2 minutes) for each 1°C increase in ambient maximum temperature (range 7.1–30.2°C), 0.27% less daily sedentary time (approximately 2.3 minutes) for each 1°C increase in ambient mean temperature (range 4.3–22.2°C), and 0.23% less daily sedentary time (approximately 2.0 minutes) for each 1°C increase in diurnal variation (range 3.0–21.6°C). CONCLUSIONS: These results are contrary to our hypothesis in which we expected a curvilinear relationship between temperature (maximum, mean, minimum, and diurnal variation) and sedentary time. Our findings suggest that temperature is an important environmental factor that influences children’s sedentary behavior.