Cargando…

circVAR database: genome-wide archive of genetic variants for human circular RNAs

BACKGROUND: Circular RNAs (circRNAs) play important roles in regulating gene expression through binding miRNAs and RNA binding proteins. Genetic variation of circRNAs may affect complex traits/diseases by changing their binding efficiency to target miRNAs and proteins. There is a growing demand for...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Min, Qu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599103/
https://www.ncbi.nlm.nih.gov/pubmed/33121433
http://dx.doi.org/10.1186/s12864-020-07172-y
Descripción
Sumario:BACKGROUND: Circular RNAs (circRNAs) play important roles in regulating gene expression through binding miRNAs and RNA binding proteins. Genetic variation of circRNAs may affect complex traits/diseases by changing their binding efficiency to target miRNAs and proteins. There is a growing demand for investigations of the functions of genetic changes using large-scale experimental evidence. However, there is no online genetic resource for circRNA genes. RESULTS: We performed extensive genetic annotation of 295,526 circRNAs integrated from circBase, circNet and circRNAdb. All pre-computed genetic variants were presented at our online resource, circVAR, with data browsing and search functionality. We explored the chromosome-based distribution of circRNAs and their associated variants. We found that, based on mapping to the 1000 Genomes and ClinVAR databases, chromosome 17 has a relatively large number of circRNAs and associated common and health-related genetic variants. Following the annotation of genome wide association studies (GWAS)-based circRNA variants, we found many non-coding variants within circRNAs, suggesting novel mechanisms for common diseases reported from GWAS studies. For cancer-based somatic variants, we found that chromosome 7 has many highly complex mutations that have been overlooked in previous research. CONCLUSION: We used the circVAR database to collect SNPs and small insertions and deletions (INDELs) in putative circRNA regions and to identify their potential phenotypic information. To provide a reusable resource for the circRNA research community, we have published all the pre-computed genetic data concerning circRNAs and associated genes together with data query and browsing functions at http://soft.bioinfo-minzhao.org/circvar.