Cargando…
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI
OBJECTIVES: To develop an automatic method for identification and segmentation of clinically significant prostate cancer in low-risk patients and to evaluate the performance in a routine clinical setting. METHODS: A consecutive cohort (n = 292) from a prospective database of low-risk patients eligib...
Autores principales: | Arif, Muhammad, Schoots, Ivo G., Castillo Tovar, Jose, Bangma, Chris H., Krestin, Gabriel P., Roobol, Monique J., Niessen, Wiro, Veenland, Jifke F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599141/ https://www.ncbi.nlm.nih.gov/pubmed/32594208 http://dx.doi.org/10.1007/s00330-020-07008-z |
Ejemplares similares
-
Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
por: Castillo T., Jose M., et al.
Publicado: (2021) -
Quantitative 3-T multi-parametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy
por: Dinis Fernandes, Catarina, et al.
Publicado: (2018) -
Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications
por: Castillo T., Jose M., et al.
Publicado: (2020) -
Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI
por: Dikaios, Nikolaos, et al.
Publicado: (2014) -
Multi-parametric MRI zone-specific diagnostic model performance compared with experienced radiologists for detection of prostate cancer
por: Dikaios, Nikolaos, et al.
Publicado: (2018)