Cargando…
Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
OBJECTIVES: To analyze the performance of radiological assessment categories and quantitative computational analysis of apparent diffusion coefficient (ADC) maps using variant machine learning algorithms to differentiate clinically significant versus insignificant prostate cancer (PCa). METHODS: Ret...
Autores principales: | Bernatz, Simon, Ackermann, Jörg, Mandel, Philipp, Kaltenbach, Benjamin, Zhdanovich, Yauheniya, Harter, Patrick N., Döring, Claudia, Hammerstingl, Renate, Bodelle, Boris, Smith, Kevin, Bucher, Andreas, Albrecht, Moritz, Rosbach, Nicolas, Basten, Lajos, Yel, Ibrahim, Wenzel, Mike, Bankov, Katrin, Koch, Ina, Chun, Felix K.-H., Köllermann, Jens, Wild, Peter J., Vogl, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599168/ https://www.ncbi.nlm.nih.gov/pubmed/32676784 http://dx.doi.org/10.1007/s00330-020-07064-5 |
Ejemplares similares
-
Evaluation of automatic discrimination between benign and malignant prostate tissue in the era of high precision digital pathology
por: Zhdanovich, Yauheniya, et al.
Publicado: (2023) -
Impact of rescanning and repositioning on radiomic features employing a multi-object phantom in magnetic resonance imaging
por: Bernatz, Simon, et al.
Publicado: (2021) -
The primacy of multiparametric MRI in men with suspected prostate cancer
por: Richenberg, Jonathan, et al.
Publicado: (2019) -
Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer
por: Wildeboer, Rogier R., et al.
Publicado: (2016) -
3D T2-weighted imaging to shorten multiparametric prostate MRI protocols
por: Polanec, Stephan H., et al.
Publicado: (2017)