Cargando…
Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients
Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. However, current machine-learning-based predictions of drug response often fail to identify robust translational biomarkers from preclinical models. Here, we pres...
Autores principales: | Kong, JungHo, Lee, Heetak, Kim, Donghyo, Han, Seong Kyu, Ha, Doyeon, Shin, Kunyoo, Kim, Sanguk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599252/ https://www.ncbi.nlm.nih.gov/pubmed/33127883 http://dx.doi.org/10.1038/s41467-020-19313-8 |
Ejemplares similares
-
Development of bioinformatics and multi-omics analyses in organoids
por: Ha, Doyeon, et al.
Publicado: (2023) -
Domain-mediated interactions for protein subfamily identification
por: Lee, Heetak, et al.
Publicado: (2020) -
Network-based machine learning approach to predict immunotherapy response in cancer patients
por: Kong, JungHo, et al.
Publicado: (2022) -
Evolutionary rewiring of regulatory networks contributes to phenotypic differences between human and mouse orthologous genes
por: Ha, Doyeon, et al.
Publicado: (2022) -
Link clustering explains non-central and contextually essential genes in protein interaction networks
por: Kim, Inhae, et al.
Publicado: (2019)