Cargando…
Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets
BACKGROUND: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599294/ https://www.ncbi.nlm.nih.gov/pubmed/33150324 http://dx.doi.org/10.1016/j.eclinm.2020.100552 |
_version_ | 1783602839419879424 |
---|---|
author | Matsushita, Kunihiro Jassal, Simerjot K Sang, Yingying Ballew, Shoshana H Grams, Morgan E Surapaneni, Aditya Arnlov, Johan Bansal, Nisha Bozic, Milica Brenner, Hermann Brunskill, Nigel J Chang, Alex R Chinnadurai, Rajkumar Cirillo, Massimo Correa, Adolfo Ebert, Natalie Eckardt, Kai-Uwe Gansevoort, Ron T Gutierrez, Orlando Hadaegh, Farzad He, Jiang Hwang, Shih-Jen Jafar, Tazeen H Kayama, Takamasa Kovesdy, Csaba P Landman, Gijs W Levey, Andrew S Lloyd-Jones, Donald M Major, Rupert W. Miura, Katsuyuki Muntner, Paul Nadkarni, Girish N Naimark, David MJ Nowak, Christoph Ohkubo, Takayoshi Pena, Michelle J Polkinghorne, Kevan R Sabanayagam, Charumathi Sairenchi, Toshimi Schneider, Markus P Shalev, Varda Shlipak, Michael Solbu, Marit D Stempniewicz, Nikita Tollitt, James Valdivielso, José M van der Leeuw, Joep Wang, Angela Yee-Moon Wen, Chi-Pang Woodward, Mark Yamagishi, Kazumasa Yatsuya, Hiroshi Zhang, Luxia Schaeffner, Elke Coresh, Josef |
author_facet | Matsushita, Kunihiro Jassal, Simerjot K Sang, Yingying Ballew, Shoshana H Grams, Morgan E Surapaneni, Aditya Arnlov, Johan Bansal, Nisha Bozic, Milica Brenner, Hermann Brunskill, Nigel J Chang, Alex R Chinnadurai, Rajkumar Cirillo, Massimo Correa, Adolfo Ebert, Natalie Eckardt, Kai-Uwe Gansevoort, Ron T Gutierrez, Orlando Hadaegh, Farzad He, Jiang Hwang, Shih-Jen Jafar, Tazeen H Kayama, Takamasa Kovesdy, Csaba P Landman, Gijs W Levey, Andrew S Lloyd-Jones, Donald M Major, Rupert W. Miura, Katsuyuki Muntner, Paul Nadkarni, Girish N Naimark, David MJ Nowak, Christoph Ohkubo, Takayoshi Pena, Michelle J Polkinghorne, Kevan R Sabanayagam, Charumathi Sairenchi, Toshimi Schneider, Markus P Shalev, Varda Shlipak, Michael Solbu, Marit D Stempniewicz, Nikita Tollitt, James Valdivielso, José M van der Leeuw, Joep Wang, Angela Yee-Moon Wen, Chi-Pang Woodward, Mark Yamagishi, Kazumasa Yatsuya, Hiroshi Zhang, Luxia Schaeffner, Elke Coresh, Josef |
author_sort | Matsushita, Kunihiro |
collection | PubMed |
description | BACKGROUND: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. “CKD Patch” is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures. METHODS: Utilizing data from 4,143,535 adults from 35 datasets, we developed several “CKD Patches” incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch. FINDINGS: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Δc-statistic 0.027 [95% CI 0.018–0.036] and 0.010 [0.007–0.013] and categorical net reclassification improvement 0.080 [0.032–0.127] and 0.056 [0.044–0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89–3.40) in very high-risk CKD (e.g., eGFR 30–44 ml/min/1.73m(2) with albuminuria ≥30 mg/g), 1.86 (1.48–2.44) in high-risk CKD (e.g., eGFR 45–59 ml/min/1.73m(2) with albuminuria 30–299 mg/g), and 1.37 (1.14–1.69) in moderate risk CKD (e.g., eGFR 60–89 ml/min/1.73m(2) with albuminuria 30–299 mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37–1.81), 1.24 (1.10–1.54), and 1.21 (0.98–1.46). INTERPRETATION: The “CKD Patch” can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available. FUNDING: US National Kidney Foundation and the NIDDK. |
format | Online Article Text |
id | pubmed-7599294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75992942020-11-03 Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets Matsushita, Kunihiro Jassal, Simerjot K Sang, Yingying Ballew, Shoshana H Grams, Morgan E Surapaneni, Aditya Arnlov, Johan Bansal, Nisha Bozic, Milica Brenner, Hermann Brunskill, Nigel J Chang, Alex R Chinnadurai, Rajkumar Cirillo, Massimo Correa, Adolfo Ebert, Natalie Eckardt, Kai-Uwe Gansevoort, Ron T Gutierrez, Orlando Hadaegh, Farzad He, Jiang Hwang, Shih-Jen Jafar, Tazeen H Kayama, Takamasa Kovesdy, Csaba P Landman, Gijs W Levey, Andrew S Lloyd-Jones, Donald M Major, Rupert W. Miura, Katsuyuki Muntner, Paul Nadkarni, Girish N Naimark, David MJ Nowak, Christoph Ohkubo, Takayoshi Pena, Michelle J Polkinghorne, Kevan R Sabanayagam, Charumathi Sairenchi, Toshimi Schneider, Markus P Shalev, Varda Shlipak, Michael Solbu, Marit D Stempniewicz, Nikita Tollitt, James Valdivielso, José M van der Leeuw, Joep Wang, Angela Yee-Moon Wen, Chi-Pang Woodward, Mark Yamagishi, Kazumasa Yatsuya, Hiroshi Zhang, Luxia Schaeffner, Elke Coresh, Josef EClinicalMedicine Research Paper BACKGROUND: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. “CKD Patch” is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures. METHODS: Utilizing data from 4,143,535 adults from 35 datasets, we developed several “CKD Patches” incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch. FINDINGS: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Δc-statistic 0.027 [95% CI 0.018–0.036] and 0.010 [0.007–0.013] and categorical net reclassification improvement 0.080 [0.032–0.127] and 0.056 [0.044–0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89–3.40) in very high-risk CKD (e.g., eGFR 30–44 ml/min/1.73m(2) with albuminuria ≥30 mg/g), 1.86 (1.48–2.44) in high-risk CKD (e.g., eGFR 45–59 ml/min/1.73m(2) with albuminuria 30–299 mg/g), and 1.37 (1.14–1.69) in moderate risk CKD (e.g., eGFR 60–89 ml/min/1.73m(2) with albuminuria 30–299 mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37–1.81), 1.24 (1.10–1.54), and 1.21 (0.98–1.46). INTERPRETATION: The “CKD Patch” can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available. FUNDING: US National Kidney Foundation and the NIDDK. Elsevier 2020-10-14 /pmc/articles/PMC7599294/ /pubmed/33150324 http://dx.doi.org/10.1016/j.eclinm.2020.100552 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Matsushita, Kunihiro Jassal, Simerjot K Sang, Yingying Ballew, Shoshana H Grams, Morgan E Surapaneni, Aditya Arnlov, Johan Bansal, Nisha Bozic, Milica Brenner, Hermann Brunskill, Nigel J Chang, Alex R Chinnadurai, Rajkumar Cirillo, Massimo Correa, Adolfo Ebert, Natalie Eckardt, Kai-Uwe Gansevoort, Ron T Gutierrez, Orlando Hadaegh, Farzad He, Jiang Hwang, Shih-Jen Jafar, Tazeen H Kayama, Takamasa Kovesdy, Csaba P Landman, Gijs W Levey, Andrew S Lloyd-Jones, Donald M Major, Rupert W. Miura, Katsuyuki Muntner, Paul Nadkarni, Girish N Naimark, David MJ Nowak, Christoph Ohkubo, Takayoshi Pena, Michelle J Polkinghorne, Kevan R Sabanayagam, Charumathi Sairenchi, Toshimi Schneider, Markus P Shalev, Varda Shlipak, Michael Solbu, Marit D Stempniewicz, Nikita Tollitt, James Valdivielso, José M van der Leeuw, Joep Wang, Angela Yee-Moon Wen, Chi-Pang Woodward, Mark Yamagishi, Kazumasa Yatsuya, Hiroshi Zhang, Luxia Schaeffner, Elke Coresh, Josef Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets |
title | Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets |
title_full | Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets |
title_fullStr | Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets |
title_full_unstemmed | Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets |
title_short | Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets |
title_sort | incorporating kidney disease measures into cardiovascular risk prediction: development and validation in 9 million adults from 72 datasets |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599294/ https://www.ncbi.nlm.nih.gov/pubmed/33150324 http://dx.doi.org/10.1016/j.eclinm.2020.100552 |
work_keys_str_mv | AT matsushitakunihiro incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT jassalsimerjotk incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT sangyingying incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT ballewshoshanah incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT gramsmorgane incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT surapaneniaditya incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT arnlovjohan incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT bansalnisha incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT bozicmilica incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT brennerhermann incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT brunskillnigelj incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT changalexr incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT chinnadurairajkumar incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT cirillomassimo incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT correaadolfo incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT ebertnatalie incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT eckardtkaiuwe incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT gansevoortront incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT gutierrezorlando incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT hadaeghfarzad incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT hejiang incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT hwangshihjen incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT jafartazeenh incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT kayamatakamasa incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT kovesdycsabap incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT landmangijsw incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT leveyandrews incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT lloydjonesdonaldm incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT majorrupertw incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT miurakatsuyuki incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT muntnerpaul incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT nadkarnigirishn incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT naimarkdavidmj incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT nowakchristoph incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT ohkubotakayoshi incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT penamichellej incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT polkinghornekevanr incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT sabanayagamcharumathi incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT sairenchitoshimi incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT schneidermarkusp incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT shalevvarda incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT shlipakmichael incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT solbumaritd incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT stempniewicznikita incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT tollittjames incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT valdivielsojosem incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT vanderleeuwjoep incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT wangangelayeemoon incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT wenchipang incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT woodwardmark incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT yamagishikazumasa incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT yatsuyahiroshi incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT zhangluxia incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT schaeffnerelke incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets AT coreshjosef incorporatingkidneydiseasemeasuresintocardiovascularriskpredictiondevelopmentandvalidationin9millionadultsfrom72datasets |